Để học tốt Hình Học 11, phần dưới giải các bài tập sách giáo khoa Toán 11 được biên soạn bám sát theo nội dung SGK Toán Đại Số 11. Dưới đây chúng ta sẽ cùng tìm hiểu nội dung Vectơ Trong không gian – Toán 11 và giải một số bài tập liên quan đến nội dung này để nắm chắc kiến thức nhé!
I. ĐỊNH NGHĨA VÀ CÁC PHÉP TOÁN VỀ VECTƠ TRONG KHÔNG GIAN
Cho đoạn thẳng AB trong không gian. Nếu ta chọn điểm đầu là A, điểm cuối là B ta có một vectơ, được kí hiệu là
Định nghĩa
Vectơ trong không gian là một đoạn thẳng có hướng. Kí hiệu chỉ vectơ có điểm đầu là A, điểm cuối B. Vectơ còn được kí hiệu là
Các khái niệm có liên quan đến vectơ như giá của vectơ, độ dài của vectơ, sự cùng phương, cùng hướng của hai vectơ, vectơ – không, sự bằng nhau của hai vectơ, … được định nghĩa tương tự như trong mặt phẳng.
II. ĐIỀU KIỆN ĐỒNG PHẲNG CỦA BA VECTƠ
1. Khái niệm về sự đồng phẳng của ba vectơ trong không gian
Trong không gian cho ba vectơ đều khác vectơ – không. Nếu từ một điểm O bất kì ta vẽ thì có thể xả ra hai trường hợp:
+ Trường hợp các đường thẳng OA, OB, OC không cùng nằm trong một mặt phẳng, khi đó ta nói rằng vectơ không đồng phẳng.
+ Trường hợp các đường thẳng OA, OB, OC cùng nằm trong một mặt phẳng thi ta nói ba vectơ đồng phẳng.
Trong trường hợp này giá của các vectơ luôn luôn song song với một mặt phẳng.
a) Ba vectơ không đồng phẳng
b) Ba vectơ đồng phẳng
Chú ý: Việc xác định sự đồng phẳng hoặc không đồng phẳng của ba vectơ nói trên không phụ thuộc vào việc chọn điểm O.
Từ đó ta có định nghĩa sau đây:
2. Định nghĩa
Trong không gian ba vectơ được gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng.
3. Điều kiện để ba vectơ đồng phẳng
Từ định nghĩa ba vectơ đồng phẳng và từ định lí về sự phân tích (hay biểu thị) một vectơ theo hai vectơ hai vectơ không cùng phương trong hình học phẳng chúng ta có thể chứng minh được định lí sau đây:
Định lí 1
Trong không gian cho hai vectơ không cùng phương và vectơ . Khi đó ba vectơ đồng phẳng khi và chỉ khi có cặp số m, n sao cho . Ngoài ra cặp số m, n là duy nhất.
Định lí 2
Trong không gian cho ba vectơ không đồng phẳng Khi đó với mọi vectơ ta đều tìm được một bộ ba số m, n, p sao cho . Ngoại ra bộ ba số m, n, p là duy nhất.
III. Giải Bài Tập SGK
Bài 1 (trang 91 SGK Hình học 11):
Cho hình lăng trụ tứ giác ABCD.A‘B‘C‘D‘. Mặt phẳng (P) cắt các cạnh bên AA‘, BB‘, CC‘, DD‘ lần lượt tại I, K, L, M. Xét các vectơ có các điểm đầu là các điểm I, K, L, M và có các điểm cuối là các đỉnh của hình lăng trụ. Hãy chỉ ra các vectơ:
Lời giải:
Bài 2 (trang 91 SGK Hình học 11):
Cho hình hộp chữ nhật ABCD.A‘B‘C‘D‘. Chứng minh rằng:
Lời giải:
Bài 3 (trang 91 SGK Hình học 11):
Cho hình bình hành ABCD. Gọi S là một điểm nằm ngoài mặt phẳng (ABCD). Chứng minh rằng:
Lời giải:
Bài 4 (trang 92 SGK Hình học 11):
Cho hình tứ diện ABCD. Gọi M và N lần lượt là các trung điểm của AB và CD.
Lời giải:
Bài 5 (trang 92 SGK Hình học 11):
Cho hình tứ diện ABCD. Hãy xác định hai điểm E, F sao cho :
Lời giải:
⇒ F là đỉnh còn lại của hình bình hành ADGF
Hay F là điểm đối xứng với E qua G.
Bài 6 (trang 92 SGK Hình học 11):
Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABC.
Lời giải:
Bài 7 (trang 92 SGK Hình học 11):
Gọi M và N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN và P là một điểm bất kỳ trong không gian. Chứng minh rằng :
Lời giải:
Bài 8 (trang 92 SGK Hình học 11):
Cho lăng trụ tam giác ABC.A’B’C’ có . Hãy phân tích (hay biểu thị) các vectơ qua các vectơ
Lời giải:
Bài 9 (trang 92 SGK Hình học 11):
Lời giải
Bài 10 (trang 92 SGK Hình học 11):
Lời giải:
Trên đây là nội dung liên quan đến Vectơ Trong không gian – Toán 11 được dean2020.edu.vn đã tổng hợp được và chia sẻ đến các bạn. Hy vọng những kiến thức mà chúng tôi chia sẻ sẽ mang lại cho bạn những thông tin bổ ích nhé!