Những năm gần đây, các cụm từ như “AI” hay “Trí tuệ nhân tạo”… dường như đã quá phổ biến trong cuộc sống hiện nay. Vậy AI là gì? Mục đích của nó là gì? Nó ảnh hưởng như thế nào đến cuộc sống hiện tại?.. là những câu hỏi mà chắc nhiều người vẫn còn thắc mắc. Vậy nên, hãy cùng chúng tôi tìm hiểu thêm những thông tin liên quan đến Al qua bài viết dưới đây bạn nhé!
Công nghệ Al là gì ?
Công nghệ công nghệ AI (viết tắt của Artifical Intelligence) hoặc trí thông minh nhân tạo là công nghệ mô phỏng các quá trình suy nghĩ và học tập của con người cho máy móc, đặc biệt là các hệ thống máy tính. Các quá trình này bao gồm việc học tập (thu thập thông tin và các quy tắc sử dụng thông tin), lập luận (sử dụng các quy tắc để đạt được kết luận gần đúng hoặc xác định), và tự sửa lỗi. Các ứng dụng đặc biệt của AI bao gồm các hệ thống chuyên gia, nhận dạng tiếng nói và thị giác máy tính (nhận diện khuôn mặt, vật thể hoặc chữ viết).
Khái niệm về công nghệ AI xuất hiện đầu tiên bởi John McCarthy, một nhà khoa học máy tính Mỹ, vào năm 1956 tại Hội nghị The Dartmouth. Ngày nay, công nghệ AI là một thuật ngữ bao gồm tất cả mọi thứ từ quá trình tự động hoá robot đến người máy thực tế.
Công nghệ AI gần đây trở nên nổi tiếng, nhận được sự quan tâm của nhiều người là nhờ Dữ liệu lớn (Big Data), mối quan tâm của các doanh nghiệp về tầm quan trọng của dữ liệu cùng với công nghệ phần cứng đã phát triển mạnh mẽ hơn, cho phép xử lý công nghệ AI với tốc độ nhanh hơn bao giờ hết.
Các thành phần của AI
Khi xu hướng AI ngày càng phát triển, các nhà cung cấp đã tăng cường thúc đẩy việc sử dụng AI cho các sản phẩm và dịch vụ của họ. Thông thường những gì họ đề cập đến là AI chỉ đơn giản là một thành phần như máy học. AI đòi hỏi một nền tảng của phần cứng và phần mềm chuyên dụng để viết và đào tạo các thuật toán học máy. Không một ngôn ngữ lập trình nào đồng bộ với AI, nhưng một số ít như ngôn ngữ Python và C được sử dụng trong lĩnh vực này.
Các dịch vụ đám mây AI phổ biến bao gồm:
– Amazon AI
– Trợ lý IBM Watson
– Dịch vụ nhận thức của Microsoft
– Google AI
Phân loại công nghệ AI
Phân theo mức độ phức tạp, chúng ta có thể phân công nghệ AI thành 4 loại sau:
Loại 1: Công nghệ AI phản ứng (Reactive Machine)
Một ví dụ là Deep Blue, chương trình tự động chơi cờ vua của IBM đã đánh bại kì thủ thế giới Garry Kasparov vào những năm 1990. Công nghệ AI của Deep Blue có thể xác định các nước cờ và dự đoán những bước đi tiếp theo. Nhưng nó không có ký ức và không thể sử dụng những kinh nghiệm trong quá khứ để tiếp tục huấn luyện trong tương lai.
Loại công nghệ AI này phân tích những động thái khả thi – của chính nó và đối thủ – và chọn hành động chiến lược nhất. Deep Blue và AlphaGO (chơi cờ vây) của Google được thiết kế cho các mục đích hẹp và không thể dễ dàng áp dụng cho tình huống khác.
Loại 2: Công nghệ AI với bộ nhớ hạn chế.
Các hệ thống AI này có thể sử dụng những kinh nghiệm trong quá khứ để đưa ra các quyết định trong tương lai. Một số chức năng ra quyết định này có mặt trong các loại thiết bị không người lái như xe, máy bay drone hoặc tàu ngầm. Kết hợp các cảm biến môi trường xung quanh công nghệ AI này có thể dự đoán được tình huống và đưa ra những bước hành động tối ưu cho thiết bị. Sau đó chúng sẽ được sử dụng để đưa ra hành động trong bước tiếp theo.
Loại 3: Lý thuyết về trí tuệ nhân tạo
Đây là một thuật ngữ tâm lý. Công nghệ AI này có thể tự mình suy nghĩ và học hỏi những thứ xung quanh để áp dụng cho chính bản thân nó cho một việc cụ thể. Loại công nghệ AI này chưa khả thi trong thời gian hiện tại.
Loại 4: Tự nhận thức
Lúc này cả hệ thống AI có ý thức về bản thân, có ý thức và hành xử như con người. Chúng thậm chí còn có cảm xúc và hiểu được cảm xúc của những người khác. Tất nhiên, loại công nghệ AI này vẫn chưa khả thi.
Ưu điểm và nhược điểm của trí tuệ nhân tạo AI
Mạng lưới thần kinh nhân tạo và công nghệ trí tuệ nhân tạo với khả năng học tập sâu đang phát triển nhanh chóng, chủ yếu là do AI xử lý lượng lớn dữ liệu nhanh hơn nhiều và đưa ra dự đoán chính xác hơn khả năng của con người. Mặc dù khối lượng dữ liệu khổng lồ được tạo ra hàng ngày sẽ chôn vùi những nhà nghiên cứu, các ứng dụng AI sử dụng học máy để có thể lấy những dữ liệu đó và nhanh chóng biến nó thành thông tin có thể thực hiện được. Theo văn bản này, nhược điểm chính của việc sử dụng AI là tốn kém khi xử lý một lượng lớn dữ liệu mà lập trình AI yêu cầu.
AI mạnh và AI yếu
AI được phân loại là mạnh hay yếu. AI yếu, thường được các hệ thống AI được thiết kế và đào tạo để hoàn thành một nhiệm vụ cụ thể như Robot công nghiệp và trợ lý cá nhân ảo như Siri của Apple.
AI mạnh mô tả chương trình có thể tái tạo khả năng nhận thức của con người. Khi được trình bày với một nhiệm vụ xa lạ, một hệ thống AI mạnh có thể sử dụng logic để áp dụng kiến thức từ lĩnh vực này sang lĩnh vực khác và tìm ra giải pháp một cách tự động.
Khả năng giải thích và trí tuệ nhân tạo
Khả năng giải thích sẽ một trở ngại trong việc sử dụng AI trong các lĩnh vực hoạt động theo các yêu cầu phải tuân thủ quy định nghiệm ngắt. Ví dụ, các tổ chức tài chính, khi quyết định từ chối cấp tín dụng được đưa ra bởi AI, có thể khó để đưa ra các giải thích rõ ràng, các lý do không cấp tín dụng cho khách hàng.
Các ứng dụng AI đã được dùng trong thực tế
Trí tuệ nhân tạo đã được áp dụng vào một loạt các lĩnh vực. Dưới đây là sáu ví dụ:
AI trong chăm sóc sức khỏe
Đặt cược lớn nhất là cải thiện kết quả của bệnh nhân và giảm chi phí. Các công ty đang áp dụng máy học để chẩn đoán tốt hơn và nhanh hơn con người. Một trong những công nghệ chăm sóc sức khỏe nổi tiếng nhất là IBM Watson. Nó hiểu ngôn ngữ tự nhiên và có thể trả lời các câu hỏi. Hệ thống khai thác dữ liệu bệnh nhân và các nguồn dữ liệu có sẵn khác để tạo thành một giả thuyết, sau đó nó đưa ra một lược đồ chấm điểm tin cậy.
Các ứng dụng AI khác bao gồm chatbot, một chương trình máy tính được sử dụng trực tuyến để trả lời các câu hỏi và hỗ trợ khách hàng, để giúp sắp xếp các cuộc hẹn theo dõi hoặc hỗ trợ bệnh nhân thông qua quy trình thanh toán và trợ lý sức khỏe ảo cung cấp phản hồi y tế cơ bản.
AI trong kinh doanh
Tự động hóa quá trình robot đang được áp dụng cho các nhiệm vụ lặp đi lặp lại thường được thực hiện bởi con người. Các thuật toán máy học đang được tích hợp vào các nền tảng phân tích và khám phá thông tin về cách phục vụ khách hàng tốt hơn. Chatbots đã được kết hợp vào các trang web để cung cấp dịch vụ ngay lập tức cho khách hàng.
AI trong giáo dục
AI có thể tự động hóa việc chấm điểm, giúp các nhà giáo dục có thêm thời gian. Nó có thể đánh giá sinh viên và thích ứng với nhu cầu của họ, giúp họ làm việc theo tốc độ của riêng họ.
Gia sư AI có thể cung cấp hỗ trợ bổ sung cho sinh viên, đảm bảo họ luôn đi đúng hướng. Và nó có thể thay đổi nơi học sinh học và thậm chí thay thế một số giáo viên.
AI trong tài chính
AI trong các ứng dụng tài chính cá nhân, như Intuit’s Mint hoặc TurboTax, đang phá vỡ các tổ chức tài chính. Các ứng dụng như thu thập dữ liệu cá nhân và cung cấp tư vấn tài chính. Các chương trình khác, như IBM Watson, đã được áp dụng cho quá trình mua nhà. Ngày nay, phần mềm trí tuệ nhân tạo thực hiện phần lớn giao dịch trên Phố Wall.
AI trong pháp luật
Quá trình khám phá – sàng lọc thông qua các tài liệu – trong pháp luật thường là quá sức đối với con người. Tự động hóa quá trình này là sử dụng thời gian hiệu quả hơn. Các công ty khởi nghiệp cũng đang xây dựng các trợ lý máy tính hỏi và trả lời có thể sàng lọc các câu hỏi được lập trình để trả lời bằng cách kiểm tra phân loại và bản thể học liên quan đến cơ sở dữ liệu.
AI trong sản xuất
Đây là một lĩnh vực đã đi đầu trong việc kết hợp robot vào quy trình làm việc. Robot công nghiệp được sử dụng để thực hiện các nhiệm vụ đơn lẻ và được tách ra khỏi công nhân của con người, nhưng khi công nghệ tiến bộ đã thay đổi.
AI trong ngân hàng
Các ngân hàng đã tìm thấy kết quả tốt trong việc sử dụng chatbot để làm cho khách hàng của họ biết về các dịch vụ và dịch vụ bổ sung. Họ cũng đang sử dụng AI để cải thiện việc ra quyết định cho vay, đặt giới hạn tín dụng và xác định cơ hội đầu tư.
AI trong bảo mật
AI và máy học đang đứng đầu trong danh sách các nhà cung cấp bảo mật danh sách từ thông dụng đang sử dụng ngày nay để phân biệt các dịch vụ của họ. Những điều khoản đó cũng đại diện cho các công nghệ thực sự khả thi. Trí tuệ nhân tạo và máy học trong các sản phẩm an ninh mạng đang gia tăng giá trị thực cho các nhóm bảo mật đang tìm cách xác định các cuộc tấn công, phần mềm độc hại và các mối đe dọa khác.
Các tổ chức ngày nay sử dụng máy học trong phần mềm quản lý sự kiện và thông tin bảo mật (SIEM) và các lĩnh vực liên quan để phát hiện sự bất thường và xác định các hoạt động đáng ngờ chỉ ra các mối đe dọa. Bằng cách phân tích dữ liệu và sử dụng logic để xác định sự tương đồng với mã độc đã biết, AI có thể cung cấp cảnh báo cho các cuộc tấn công mới và mới nổi sớm hơn nhiều so với nhân viên của con người và các công nghệ lặp lại trước đây.
Do đó, công nghệ bảo mật AI vừa giảm đáng kể số lượng tấn công vừa giúp các tổ chức có thêm thời gian để chống lại các mối đe dọa thực sự trước khi thiệt hại xảy ra. Công nghệ phát triển đang đóng một vai trò lớn trong việc giúp các tổ chức chống lại các cuộc tấn công mạng.
Trên đây là những thông tin liên quan đến công nghệ AI do dean2020.edu.vn đã tổng hợp và chia sẻ đến các bạn. Hy vọng rằng với những chia sẻ trên đây sẽ đem lại cho bạn những thông tin cần thiết nhé!